Pseudomonas reptilivora: a revolutionary potential for the generation of antibiotics
DOI:
https://doi.org/10.35830/mcya.vi22.365Keywords:
Pseudomona aeruginosa, heavy metals, bacterial resistanceAbstract
The production of antibiotics by bacteria of the Pseudomonas genus is a new topic, most are produced by Pseudomonas aeruginosa (Biosafety Class II), this makes their industrial and laboratory use difficult due to the high probability of opportunism. On the other hand, Pseudomonas reptilivora (Class I) is a bacteria that has been partially studied for the generation of antibiotics that contain copper and iron atoms within the biologically active molecule generated, it has a unique ability to assimilate high concentrations of heavy metals. or compounds highly toxic to humans, which can be used in the synthesis of new antibiotics. These new antibiotics could help counteract highly pathogenic and deadly bacteria.
Downloads
References
Afonso, L., Andreata, M. F. d. L., Chryssafidis, A. L., Alarcón, S. F., das Neves, A. P., da Silva, J. V. F. R., Gonçalves, G. d. S., Abussafi, L. D. d. S., Simionato, A. S., Cely, M. V. T., & Andrade, G. (2022). Fluopsin C: A Review of the Antimicrobial Activity against Phytopathogens. Agronomy, 12(12): pp. 2997. doi: https://doi.org/10.3390/agronomy12122997.
Caldwell, M. E., & Ryerson, D. L. (1939). A New Species of the Genus Pseudomonas. Journal of Bacteriology, 39(3): pp. 323-336. doi: https://doi.org/10.1128/jb.39.3.323336.1940.
Chavarría, M., Nikel, P. I., PérezPantoja, D., & De Lorenzo, V. (2013). The EntnerDoudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environmental of Microbiology, 15(6): pp. 1772-1785. doi: https://doi.org/10.1111/14622920.12069.
Constantino, Herrera, Y. A., Soto, Reyes, L. J., & Vega, García, F. (2018). Biorremediación de disolución con permanganato de potasio para generar birnesita. Tendencias en Docencia e Investigación en Química, UAM-Azcapotzalco. México.
Gonçalves, T., & Vasconcelos, U. (2021). Colour me blue: The history and the biotechnological potential of pyocyanin. Molecules, 26(4): pp. 927. doi:https://doi.org/10.3390/molecules26040927.
Hirose, A., Kouzuma, A., & Watanabe, K. (2019). Towards development of electrogenetics using electrochemically active bacteria. Biotechnology in Advances, 37(6): pp. 107351. doi:https://doi.org/10.1016/j.biotechadv.2019.02.007
Jablonska, J., Dubrowska, K., Augustyniak, A., Kordas, M., & Rakoczy, R. (2022). Application of Magnetically Assisted Reactors for Modulation of Growth and Pyocyanin Production by Pseudomonas aeruginosa. Frontier in Bioengeenering and Biotechnology, 10:795871. doi: 10.3389/fbioe.2022.795871.
López-Jácome, L. E., Fernández-Rodríguez, D., Franco-Cendejas, R., Camacho-Ortiz, A., Morfin-Otero, M. R., Rodríguez-Noriega, E., Ponce-de-León, A., Ortiz-Brizuela, E., Rojas-Larios, F., Velázquez-Acosta, M. C., Mena-Ramírez, J. P., Rodríguez-Zulueta, P., Bolado-Martínez, E., Quintanilla-Cazares, L. J., Avilés-Benítez, L. K., Consuelo-Munoz, S., Choy-Chang, E, V., Feliciano-Guzmán, J. M., Couoh-May, C.A., López-Gutiérrez, E., Molina-Jaimes, A., Rincón-Zuno, J., Gil-Veloz, M., Alcaraz-Espejel, M., Corte-Rojas, R. E., Gómez-Espinosa, J., Monroy-Colin, V.A., Morales-de-la-Peña, C. T., Aguirre-Burciaga, E., López-Moreno, L. I., Martínez-Villarreal, R. T., Cetina-Umaña, C. M., Galindo-Méndez, M., Soto-Nieto, G. I., Cobos-Canul, D. I., Moreno-Méndez, M. I., Tello-Gómez, E., Romero-Romero, D., Quintana-Ponce, S., Peralta-Catalán, R., Valadez-Quiroz, A., Molina-Chavarría, A., Padilla-Ibarra, C., Barroso-Herrera-y-Cairo, I.E., Duarte-Miranda, L. S., López-López, D.M., Escalante-Armenta, S.P., Osorio-Guzmán, M. J., López-García, M., Garza-Ramos, U., Delgado-Enciso, I., & Garza-González E. (2022). Increment Antimicrobial Resistance During COVID-19 Pandemic: Results from the invifar network. Microbial Drug Resistance, 28(3): pp. 338-345. doi:http://doi.org/10.1089/mdr.2021.0231.
Martínez-Molina, E., & Olivares, J. (1979). Antibiotic production by Pseudomonas reptilivora as a phage conversion. Canadian Journal of Microbiology, 25(9): pp. 1108-1110. doi: https://doi.org/10.1139/m79-170.
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., HainesWoodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., & Ghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325): pp. 629-655. doi:https://doi.org/10.1016/S0140-6736(21)02724-0.
Organización de las Naciones Unidas para la Agricultura y la Alimentación/Organización Mundial de la Salud. (2021). Bacterias y súper bacterias ponen en riesgo la salud humana. Recuperado de: https://www.paho.org/es/noticias/4-3-2021-bacterias-super-bacterias-ponen-riesgo-salud-humana.
Patteson, J. B., Putz, A. T., Tao, L., Simke, W. C., Bryant, L. H., Britt, R. D., & Li, B. (2021). Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science, 374(6570): pp. 1005-1009. doi:https://doi.org/10.1126/science.abj6749.
Pelegrin, A. C., Palmieri, M., Mirande, C., Oliver, A., Moons, P., Goossens, H., & Belkum, A. v. (2021). Pseudomonas aeruginosa: a clinical and genomics update. FEMS Microbiology Reviews, 45(6): pp. 1-20. doi: https://doi.org/10.1093/femsre/fuab026.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Milenaria, Ciencia y arte
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.