Glycation of molecules and its relationship with diabetes
DOI:
https://doi.org/10.35830/mcya.vi23.444Keywords:
glucose, diabetes, glycationAbstract
When we consume food and the digestion process subsequently takes place, the food is rotted into substances that the body uses to generate energy; for example: glucose. This molecule is transported through the bloodstream to the body's cells by a very popular hormone, insulin. Insulin is like a key that opens cellular doors and allows glucose to enter from the bloodstream into the cells. If a person is not physically active, they are overweight and have inadequate dietary habits; there is a greater chance of developing diabetes. People get sick with diabetes because the body cannot produce insulin, or the insulin produced does not work properly. So, glucose cannot enter normally because the key to open the doors does not work and the glucose molecules remain in the bloodstream; increasing its concentration, promoting a cellular state where glucose achieves to modify the three-dimensional structure of other molecules; triggering multiple reactions that cause irreversible cellular damage.
Downloads
References
Basto-Abreu, A., López-Olmedo, N., Rojas-Martínez, R., Aguilar-Salinas, C. A., Moreno-Banda, G. L., Carnalla, M., Rivera, J. A., Romero-Martínez, M., Barquera, S. y Barrientos-Gutiérrez, T (2023). Prevalencia de prediabetes y diabetes en México: Ensanut 2022. Salud Pública de México. 65(1):163-168. doi: 10.21149/14832
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature. 13:813-820. doi:10.1038/414813a
Cooper, M. E. (2004). Importance of Advanced Glycation End Products in Diabetes-Associated Cardiovascular and Renal Disease. American Journal of Hypertension. 17(12): 31-38. doi:10.1016/j.amjhyper.2004.08.021
Evans, J. L., Goldfine, I. D., Maddux, B. A. y Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Reviews. 23(5):599-622. doi: 10.1210/er.2001-0039
Goldin, A., Beckman, J. A., Schmidt, A. M. y Creager, M. A. (2006). Advanced Glycation End Products. Sparking the Development of Diabetic Vascular Injury. Circulation. 114(6):597- 605. doi:10.1161/CIRCULATIONNAHA.106.621854
Hegab, Z., Gibbons, S., Neyses y Mamas, A. (2012). Role of advanced glycation end products in cardiovascular disease. World Journal Cardiology. 4(4): 90-102. doi:10.4330/wjc.v4.i4.
Kang, R., Tang, D., Lotze, M. T. y Zeh, H. J. (2011). RAGE regulates autophagy and apoptosis following oxidative injury. Autophagy. 7(4):442-444. doi:0.4161/auto.7.4.14681
Koschinsky, T., He, C. J., Mitsuhashi, T., Bucala, R., Liu, C., Buenting, C., Heitmann, K y Vlassara, H. (1997). Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. PNAS. 94:6474–6479. doi: 10.1073/pnas.94.12.6474
Ott, C., Jacobs, K., Haucke, E., Navarrete-Santos, A., Grune, T. y Simm, A. (2014). Role of advanced glycation end products in celular signaling. Redox Biology. 2: 411-429. doi:10.1016/j.redox.2013.12.016
Uribarri, J., Cai, W., Pyzik, R., Goodman, S., Chen, X., Zhu, L., Ramdas, M., Striker, G. E. y Vlassara, H. (2014). Suppression of native defense mechanisms, SIRT1 and PPARy, by dietary glycoxidants precedes disease in adult humans; relevance to lifestyle-engendered chronic diseases. Amino Acids. 46(2):301-309. doi:10.1007/s00726-013-1502-4
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Milenaria, Ciencia y arte
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.